1. The graph below shows a sketch of $y=f(x)$. On the grid, draw the graph $y=f(x+3)-2$.

(2 marks)

3. The graph below shows a sketch of $y=f(x)$.

On the grid, draw the graph $y=-1 / 2 f(x)$

(2 marks)
5. Let $f(x)=2 x^{2}+4 x-5$. Describe fully the single transformation which takes $f(x)$ to each of the following graphs.
(i) $g(x)=2 x^{2}+4 x+7$
(ii) $h(x)=2 x^{2}-4 x+7$
(iii) $k(x)=8 x^{2}+8 x-5$
2. The graph below shows a sketch of $y=f(x)$. On the grid, draw the graph $y=f(2 x)$.

(2 marks)
4. The graph below shows a sketch of $y=f(x)$. On the grid, draw the graph $y=f(-x)$.

6. On the grid below sketch the following graphs, clearly indicating any asymptotes:
a) $y=\frac{1}{x}$
b) $y=-\frac{1}{x+1}$
7. Let $f(x)$ be the graph below. The vertex P has coordinates $(8,3)$. Work out the coordinates of the vertex in each of the following cases:

9. The graph of $\mathrm{y}=5^{x}$ can be transformed into the graph of $\mathrm{y}=5^{x-2}$ by two different transformations.
Describe each of these transformations fully.

(4 marks)

Q11. Let $f(x)=4 x^{3}+10$. Determine the function $\mathrm{g}(\mathrm{x})$ which $f(x)$ is mapped onto in each of the following cases:
(i) translation by the vector $\binom{-3}{-4}$
(ii) reflection in the y-axis
(iii) stretch in the x-direction scale factor $\frac{1}{3}$
8. The graph below shows a sketch of $y=f(x)$ which is defined for $-4 \leq x \leq 8$.

a) Write down the value of $f(5.5)$
b) Let $g(x)=f(-x)$. Find the value of $g(-2)$.
c) Let $\mathrm{h}(\mathrm{x})$ be such that $\mathrm{h}(-4)=0 \& \mathrm{~h}(4)=6$.

Describe fully a possible transformation which takes $f(x)$ to $h(x)$.
10. Let $f_{0}(x)=\sin (x), f_{n+1}(x)=2 f_{n}\left(x+30^{\circ}\right)$ be an iteration formula for a sequence of functions.
a) Sketch $f_{3}(x)$ on the axes for $0 \leq x \leq 360^{\circ}$

b) Solve the equation $f_{12}(x)=1000$ for $0 \leq x \leq 90^{\circ}$ to 1 d.p.

Q12. Below is part of a quadratic graph $y=f(x)$, which has turning point P . The transformed graph $g(x)=f(2 x)+25$ has turning point Q The y coordinate of Q is 9 .
Find the full co-ordinates of P and Q .

(4 marks)

