Trigonometry Exam Practice

Q1. Find the size of angle ACB to 1 decimal place.

$$Cos(x) = 13$$

$$15$$

$$x = (os')(\frac{13}{15})$$

$$x = 29.92...$$

Answer: 29.9 (3 marks)

Q2. Find the length of side XY to 1 decimal place.

$$\chi = \frac{35}{cs(40)}$$

Answer: 49.5cm

(3 marks)

Q3. Find the perimeter of the shape below correct to 2 decimal places.

$$o(cos(46) = \frac{co}{18}$$

 $= cos(46) = \frac{co}{18}$

$$Sin(38) = 12.948 \Rightarrow AC = 7.972$$
 AC
 AC
 AC
 $AR = 6.282$
 $Answer: 44.76$
 7.972

$$(cs(78) = AB \rightarrow AB = 6.282$$

Q4. Find the area of the shape below correct to 1 decimal place.

$$sin(79) = \frac{h}{10} = h = 10sin(79)$$

Q5. Below, O is the centre of the regular hexagon shown. Find the area of the hexagon to the nearest square cm.

. Area on triagle = = = x 5x h

Sin(60) = \frac{1}{13} = h = Bsin(60)

Area = \frac{1}{2} \times 13 sin(60)

• Area hexagon = $6(\frac{1}{2} \times 13 \times 13 \times 5 \times 10)$ = 5075×100 439.07.

(4 marks)

Q6. The area of the triangle below is 18 cm². Find the size of angle y to 1 decimal place.

$$\frac{1}{2} \times 70 \times (\chi + 5) = 18$$

$$\chi^2 + 5x = 36$$

$$(x+9)(x-4)=0$$

y= tan 1(4) y= 66.03. ..

(5 marks

Problem Questions:

Q7. A design for the face of a watch consists of a number of metal strips bent into the shape of triangles as shown below:

The triangles are arranged in a circular pattern so that each vertex A meets at a point. Sufficient triangles are used so there is no gap left.

Estimate the total length of the metal used to 1 decimal place. Why is the model unrealistic?

$$(\sigma(G) = 11) \Rightarrow \chi = \frac{11}{(\sigma(G))}$$

$$x = 26.028$$

. Unrealistic as the thickness/width of the ships hasn't been taken into account.

- Q8. A man walks due north along a straight road. When he reaches a point P on this road, he can see a tower T on a bearing of 30° from himself. He continues a further 225 m from point P to the point Q, at which point the tower now lies on a bearing of 60° from his position.
 - (i) Find the shortest distance of T from the road to 1 decimal place.

 $\Rightarrow pat \text{ is isouler, so } at = 120 \text{ Mo}$ $c \int_{60}^{60} T so \sin(0) = \frac{d}{22s}$ $\Rightarrow d = 194.855$

Answer: 194,9 m

(3 marks)

(ii) The man walks further north to a point R, so that the distance RT is 210 m. Determine the two possible values for the distance PR, correct to the nearest metre.

- Case 2
 194.855
- · QC= 337.498..
- · RC = 78.30
- · PR= ZZS+ ZS9.198

→ RQ = 259.198

=484.198

- $0C = \frac{164.855}{1.601} = 0C = 337.498.$
- RC2 = 2102-(94.8(5)) => RC=78.30

Answer: 641m or 484m
(3 marks)

· PR = 275+337,498 + 78.30 => PR = 640.80

225

$$OU = 2x + 2,$$

$$TU = 2x - 1$$
 and

$$OT = 3x$$

Find the shaded area correct to 1 decimal place.

$$O = \chi^2 - 4\chi - S$$

$$o = (x - 5)(x + 1)$$

$$\Rightarrow x=s, -1$$
(nied)

• Area OTU =
$$\frac{1}{2}(12\times9)$$

= $\frac{54}{12}$

·
$$Cos(x) = \frac{12}{15}$$

$$Dx = cos^{-1}(\frac{12}{15})$$

$$x = 36.869...$$

'Q10. A boat is heading directly for the foot of a vertical cliff at 2.2 m/s. At 11.59am, the position of the boat from the cliff is shown in the diagram:

Rob is standing on top of a cliff, and he will be seen by his friend Tom in the boat once the angle of depression from Rob to Tom is 75°. Estimate what time, to the nearest second, will Rob be seen by Tom.

* let current historia of boost from foot of clift be d. $ten(ko) = \frac{80}{d} \implies d = \frac{80}{ten(25)}$ = 171.56.0m

of bout from diff when Tom sees Rub be x

$$tan(70) = 80$$
 $\Rightarrow 2 = \frac{80}{tan(75)} \Rightarrow x = 21.435$

tan(70) = 80 $\Rightarrow 2 = \frac{80}{tan(75)} \Rightarrow x = 21.435$ of time = distance = 0 line = 171.520-21.435

= 68.238 seconds

Answer: 12ρm, 8 se conds
(4 marks)

. The height of the man in the Societ is not taken into account.

The wind / currents have not been taken into account.

Answer:

(2 marks)

Q11. Phil is in the grounds of a local church. A friend tells him that the angle of elevation, θ , from his current position to the top of the church tower is such that $\tan(\theta)$ is $\frac{21}{5}$. Phil says, "that means the height of the church tower is 21 m". Do you agree? Explain your choice. Not receive the form of the line thin, for exact : (the the hight of the form is $\theta = \theta = \theta$) To the roods, the hight of the form foot of have be any multiple of $\theta = \theta = \theta$.
Answer:(2 marks)