Q1.

Here are some patterns made from dots.

(a) Draw Pattern number 4 in the space below.
(b) How many dots are needed for Pattern number 15?

Q2.

Here are some patterns made from sticks.

Pattern number 1

Pattern number 2

Pattern number 3
(a) In the space below, draw Pattern number 4
(b) Complete the table.

Pattern number	1	2	3	4	5
Number of sticks	3	5	7		

(c) How many sticks make Pattern number 15?

Maria wants to work out how many sticks make Pattern number 50
(d) Write down a method she can use.
\qquad
\qquad
\qquad

Q3.
Here is a sequence of patterns made with counters.

pattern number 1

pattern number 2

pattern number 3
(a) In the space below, draw pattern number 4
(b) Complete the table.

Pattern number	1	2	3	4	5
Number of counters	5	9	13		

(c) Find an expression, in terms of n, for the number of counters in pattern number n.
\qquad

Habeeb has 50 counters.
He wants to use as many of his counters as possible to make a pattern in the sequence.
(d) What is the number of the pattern he can make using the greatest number of his counters?

Q4.
Here is a sequence of patterns made with grey square tiles and white square tiles.

pattern number 1

pattern number 2

pattern number
3
(a) In the space below, draw pattern number 4
(b) Find the total number of tiles in pattern number 20
\qquad
(c) Write an expression, in terms of n, for the number of grey tiles in pattern number n.
\qquad

Q5.

Here are the first five terms of an arithmetic sequence.

$$
\begin{array}{lllll}
3 & 5 & 7 & 9 & 11
\end{array}
$$

Write down, in terms of n, an expression for the nth term of the sequence.

Q6.

The first term of a sequence of numbers is 18
The term-to-term rule for this sequence is "add 6"
(a) Is 603 a term of the sequence?

You must explain your answer.
\qquad
\qquad
(b) Rizvi says,

$$
\text { "No terms of the sequence are multiples of } 7 "
$$

Give an example to show Rizvi is wrong.

Q7.

Here are the first four terms of an arithmetic sequence.

$$
\begin{array}{llll}
11 & 17 & 23 & 29
\end{array}
$$

(a) Find, in terms of n, an expression for the nth term of this arithmetic sequence.
\qquad
(b) Is 121 a term of this arithmetic sequence?

You must explain your answer.
\qquad
\qquad
\qquad

Q8.

Here are the first five terms of an arithmetic sequence.

$$
\begin{array}{lllll}
7 & 13 & 19 & 25 & 31
\end{array}
$$

(a) Find an expression, in terms of n, for the nth term of this sequence.

The nth term of a different sequence is $8-6 n$
(b) Is -58 a term of this sequence?

You must show how you get your answer.

Q9.
Here are the first 5 terms of an arithmetic sequence.
3
9
15
21
27
(a) Find an expression, in terms of n, for the nth term of this sequence.
\qquad

Ben says that 150 is in the sequence.
(b) Is Ben right?

You must explain your answer.
\qquad
\qquad
\qquad

Q10.

Here are the first five terms of an arithmetic sequence.
$\begin{array}{lllll}-3 & 1 & 5 & 9 & 13\end{array}$
Find an expression, in terms of n, for the nth term of this sequence.

