Q1. In the sector AOB below, $\mathrm{OB}=7 \mathrm{~cm}$

a) Find the area of OAB to $1 \mathrm{~d} . \mathrm{p}$.

Answer:
(2 marks)
b) Find the arc length AB to 1 d.p

Answer: \qquad

Q2. Below OCD is a sector of a circle, with radius 18 cm . Find the perimeter of the shape correct to 2 decimal places.

\qquad

Q3．OAB is a sector of a circle，which has centre 0 ．The area of the circle is $400 \mathrm{~cm}^{2}$ ．Given that angle AOB is 40° ，find the following， leaving your answer in terms of π ．
a）the radius of the sector OAB

Answer： \qquad
（3 marks）
b）the perimeter of the sector OAB
$\mathrm{Q} 4 . \mathrm{AOB}$ is a sector, AB is a chord, and angle $\mathrm{AOB}=\theta$.

a) Find the length of the arc AB

Answer: \qquad
b) Find the shortest distance from O to the chord.

Q5. The picture shows part of two concentric circles, of radii 18 and 24 cm . Find the area and perimeter of the shaded region.

Answer: \qquad

Q6. Below, OST is sector, and angle OUT is 90°. Find the area of the shaded region to 1 decimal place.

Answer: \qquad
(3 marks)

Q7. In triangle ABC below, $\mathrm{AB}=4, \mathrm{AC}=1$ and $\mathrm{BC}=\sqrt{13}$. ACD is a sector with radius 1 .

Find an exact expression for the shaded area.

Answer: \qquad
(6 marks)
Q8. OXY is a sector of a circle, containing equally spaced sectors
within in it. Find the ratio of the area of region R_{2} to the area of region R_{5}.

Answer: \qquad

Q9. In the sector $\mathrm{RST}, \mathrm{ST}$ is a chord, where $\mathrm{ST}=10$, and $\mathrm{SU}=4$.

Find the area of the region enclosed by the dotted lines.

Answer: \qquad
(5 marks)

Q10. Hands are attached to the clock-face below, so the time shown is
10.00 am . When the time reaches 5.00 pm , the tip of the hour hand has travelled 34 cm .

Work out the length of the hour hand to $1 \mathrm{~d} . \mathrm{p}$.
\qquad

Q11. A circular oil pipe, with diameter 20 cm , has cross-section below. If oil flows at a constant height through the pipe at $0.25 \mathrm{~m} / \mathrm{s}$, find the volume of oil which passes through the pipe in 1 hour, to 3 s.f.

\qquad

Q12. For a sport, an area is formed from concentric circles all having centre O. Region 1 ends r metres from O, with each adjacent area finishing 15% further from O than the previous area.

Find an expression for the area of region N in terms of r, θ, simplifying your answer as far as possible.
\qquad

