Inverse and Composite Functions Exam Practice

Q1. Here is a function: f(x) = 5x - 9

a) Work out the value of f(-4)

$$f(-4) = 5(-4) - 9$$

= -29

b) Work out the value of $f^{-1}(46)$

$$f^{-1}(x) = \frac{x+9}{5}$$

 $f^{-1}(46) = \frac{46+9}{5}$

Answer: (2 marks)

a) Work out the value of g(144)

$$9(144) = \sqrt{144 + 3}$$

= $12 + 3$
= 15

Answer:	15	
		(1 mark)

b) What is the input when the output value of the function is 72?

Answer:	4761
	(2 marks)

Q3. Let f and g be the functions: $f(x) = x^2 - 3$ and g(x) = x + 7

a) Work out the value of fg(-2)

$$9(-2) = -2+7$$

= 5
= 5 $f(5(-2)) = f(5)$
= $5^2 - 3$
= 22

Answer: 22 (1 mark)

b) Work out the value of gf(6)

$$f(6) = 6^{2} - 3$$

$$= 33$$

$$\Rightarrow 94(6) = 9(33)$$

$$= 33+7$$

$$= 40$$

Answer: 40 (1 mark)

c) Find the expression corresponding to gf(x)

$$gf(x) = g(x^2-3)$$

= $(x^2-3)+7$
= $5x^2+4$

Answer: $\chi^2 + 4$

(2 marks)

Q4. A function is defined by g(x) = ax + b where a and b are numbers to be found. Given that g(3) = 10 and g(8) = 12, find the value of a and b.

$$9(1)=10 \Rightarrow 3a+b=10$$
 (1)
 $9(8)=12 \Rightarrow 8a+b=12$ (2)
 $(2)-(1) \Rightarrow 5a=2$
 $a=\frac{2}{5}$, $5\sqrt{3}$, n (1):
 $3(\frac{2}{5})+1=10$
 $3=\frac{44}{5}$

Answer: $\alpha = \frac{2}{5}, 5 = \frac{44}{5}$ (3 marks)

Q5. Let f(x), g(x) be defined by f(x) = 3x + 2 and $g(x) = x^2 + 7$ such that fg(a) = 71. Find the possible values of a.

$$f(g(a) = 7) \Rightarrow f(a^{2}+7) = 71$$

$$\Rightarrow 3(a^{2}+7)+2=71$$

$$\Rightarrow 3a^{2}+21+2=71$$

$$\Rightarrow 3a^{2}=48$$

$$\Rightarrow a^{2}=16$$

$$a = 4, -4$$

Answer: $\alpha = \pm 4$

(3 marks)

Q6. Let f(x), g(x) be defined by $f(x) = x^2$ and g(x) = 3x + 2 such that a) Find an expression for fg(x).

$$F(g(x)) = f(3x+2)$$
= $(3x+2)^2$

$$= (3x+2)^2$$

$$(= 9x^2 + hx + 4)$$

b) Solve fg(x) = g(f(x)), leaving your answer in surd form.

$$g(f(x)) = g(x^{2})$$

$$= 3x^{2} + 2$$

$$\Rightarrow 6x^{2} + 12x + 4 = 3x^{2} + 2$$

$$\Rightarrow 6x^{2} + 12x + 4 = 0$$

$$\Rightarrow 3x^{2} + 6x + 2 = 0$$

$$2(3)$$

$$= -6 \pm \sqrt{12}$$

$$= -1 \pm 2\sqrt{3}$$
Answ

Answer:
$$-1 \pm \sqrt{3}$$
 (4 marks)

Q7. Let f(x) be defined by $f(x) = \frac{1}{x+1}$ together with the restriction $x \neq -1$ a) Show that $ff(x) = \frac{x+a}{x+b}$, where a and b are numbers to be found.

$$f(G) = F\left(\frac{1}{X+1}\right)$$

$$= \frac{1}{\frac{1}{X+1}} + \frac{1}{1}$$

$$= \frac{1}{\frac{1}{X+1}}$$

$$= \frac{1}{\frac{2+31}{X+1}}$$

$$= \frac{1}{\frac{2+31}{X+1}}$$

b) State the necessary restriction on the input values to ff(x).

Answer:
$$\times \pm - 2$$
 (1 mark)

Q8. A sketch of a function f(x), composed of three lines, is shown below.

a) State the value of f(7)

f(7) = 8 for the gray h

Answer: (1 mark)

b) Work out the value of ff(-4), giving your answer as a fraction in its simplified form.

$$\frac{b}{4} = \frac{4}{10} = \frac{10b}{b} = \frac{32}{10}$$

(1 mark)

c) Find the values of $f^{-1}(0)$

. X = -4 from the graph directly.

. let a be the other so lustion. Using smile tringles:

$$\frac{20-a}{a-10} = \frac{12}{8}$$

$$\frac{20-a}{a-10} = \frac{12}{8}$$

$$\frac{20-a}{a-10} = \frac{12}{8}$$
Answer: -4, 14

(2 marks)

Applied Mixed Practice Problems

Q9. A scientist models the volume (cm³) of gas G produced by a chemical reaction over time T after the start of the experiment (in seconds). She does this using the formula,

$$G = 35\sqrt{T - 50} + 100$$
, where $T \ge 50$ seconds

(i) Explain why the condition $T \ge 50$ is necessary.

(ii) Use the model to predict the volume of gas after $2\frac{1}{4}$ minutes, giving your answer to the nearest cm³.

$$G = 35\sqrt{135-50} + 100$$

= $G = 422.68$

Answer: (2 marks)

(iii) Find the time when there will be 0.15 litres of gas, giving your answer to the nearest second.

$$\frac{150-100}{35} = 57-50$$

$$\frac{(150-100)^{2}+50}{35}+50=T$$

$$T=57.04$$

Answer: S2 seconds

(4 marks)