Basic Vectors Exam Practice

Q1. a) On the grid below draw the following vectors:
i) $\binom{3}{-2}$
(ii) $\binom{4}{1}$

Answer: \qquad

				1											

b) Write down the vector which has been already draw on the grid

Answer: \qquad
(2 marks)

Q2．We define the following column vectors as follows：
$\mathbf{a}=\binom{14}{-9}$
$\mathbf{b}=\binom{-5}{11}$
a）Work out $-2 \mathbf{b}$

Answer： \qquad
b）Work out $2 \mathbf{a}-4 \mathbf{b}$

Answer： \qquad
c）Find the vector \mathbf{c} which has length 1.5 times that of vector \mathbf{a} ， and is in the opposite direction to a
\qquad

Q3. Let P be the point $(12,-14)$ and Q be the point $(27,-3)$.
(a) Write down as a column vector $\overrightarrow{\mathrm{QP}}$

Answer: \qquad
(b) A ship sets off from port, which has co-ordinates (-4, 12), and then sets sail on a vector $\binom{20}{-11}$ in order to reach an oil rig. Write down the co-ordinates of the oil rig.

Answer: \qquad
(2 marks)

Q4. ABC is an equilateral triangle containing 4 equilateral triangles. D is a mid-point of $A B, E$ is a mid-point of $B C$, and F is a mid-point of AC.

Let $\overrightarrow{\mathrm{AB}}=\boldsymbol{a}$ and $\overrightarrow{\mathrm{AC}}=\boldsymbol{c}$.
(i) Find in terms of a and \mathbf{c}, an expression for $\overrightarrow{\mathrm{BD}}$

Answer: \qquad
(ii) Find in terms of a and \mathbf{c}, a factorised expression for $\overrightarrow{\mathrm{AE}}$

Answer: \qquad
(2 marks)
(iii) Let P be the mid-point of BE. Find in terms of \mathbf{a} and \mathbf{c}, an expression for $\overrightarrow{\mathrm{PF}}$, simplifying your answer

Answer: \qquad

