3d Trigonometry Exam Practice

Q1. Find the angle between AF and the plan ABCD.

Q2. A cube has side length 4 cm. Work out the longest direct distance between any two vertices, giving your answer in exact form.

Q3. ABCDE is a square based pyramid. AB = 10 cm, & E is 25 cm vertically above the base ABCD. Find the size of angle EAC to 1 decimal place.

$$-(AC)^2 = 10^2 + 10^2$$

$$AC = \int 200$$

$$= 1052$$

$$AM = 105$$

$$AM = 1an$$
 $= 2$

$$\theta = \frac{1}{5\sqrt{5}} \left(\frac{25}{5\sqrt{5}} \right)$$

Answer: 74.2°

(4 marks)

Q4. In this cuboid, AB = 18, BC = BH = 12, and M is the mid-point of FG.

$$DN = \frac{1}{2}(AB) \Rightarrow DN = 9$$

$$(AN)^{2} = (AD)^{2} + (DN)^{2}$$

$$= 12^{2} + 9^{2}$$

$$AN = \sqrt{22}S$$

$$= 1S$$

$$(AM)^{2} = (AN)^{2} + (MN)^{2}$$

$$= 15^{2} + 17^{2}$$

$$+M = \sqrt{369}$$

$$A = 19.209.$$
 Answer:

(4 marks)

(3 marks)

Q5. In the cone below, the circular base has diameter 32 cm and the slanting height is 65 cm. Find the volume to 1 d.p.

•
$$h^2 = 65^2 - 16^2$$

• $h = \sqrt{3969}$
• $V = \frac{1}{2}\pi r^2 h$
= $\sqrt{160}$
= $\sqrt{160}$
Answer: $\sqrt{160}$

Q6. A stunt-man is going to connect the nearest corner of each tower with a wire, and slide between. The towers are $55\ m$ and $45\ m$ tall

Find the distance he will travel. (<)

Q7. ABCDE is a square based pyramid where AE = 36 cm, EAC is 55°, and AB = 20 cm. Find the volume of the pyramid to 3 s.f.

Q8. Below is a prism where: AC = 33,

CD = 8,

GN : NF = 8 : 3,

AH = 10,

DF = 16

Find angle CAN correct to 2 d.p.

use the comme rule.

•
$$GN = \mathcal{E}(33)$$
 $NF = 33-24$
= 24 = 9

· In
$$\triangle CFN$$
, $FN = 9$
 $CF = 8JS (= AG)$

where
$$q = 33$$
, $b = 5401$, $c = 8514 \Rightarrow cnA = (05)(0.171...)$

• GH =
$$\sqrt{(80)^2 - 5^2}$$

= $\sqrt{55}$ (= kJ)

$$h = 2 \times \sin(60) = 2 = 3 \times \sin(60) = 3 \times \sin(60$$

· In BJD, BJ = (25160) [51)2+52 = 5190

•
$$a = 1^{2} + (2 - 2) < (0.5)$$

• $a = 1^{3} + (2 - 2) < (0.5)$
• $a = 1^{3} + (2 - 2) < (0.5)$
• $a = 1^{3} + (2 - 2) < (0.5)$

Answer: <u>78.3°</u>

(6 marks)

Q10. In the prism, AB: EA: BC is 2:3:8. Find angle ACE to 1 d.p.

Le call
$$AB = 2$$
,
 $EA = 3$,
 $BC = 8$

$$AC = \int 2^{2} + 8^{2}$$

$$F = tan'(\frac{3}{568})$$

Answer:____**70.6**

(4 marks)

Q11. In the frustum, AB is a diameter of the top, O is the centre of the base, which has diameter 100. Find angle PAB to 4 s.f.

(6 marks)

•
$$PC = 28 \cos(55)$$
, $OM = 28 \sin(35)$

'hy symmetry PAB is isoceles.
$$(PA = PB)$$

: $PAB = 2 \times APM$

•
$$G = fan^{-1} \left(\frac{50}{31.470...} \right)$$

Q12. The tetrahedron below has 4 identical faces which are equilateral triangles. Find the vertical height of the tetrahedron in terms of l giving your answer in the form $\frac{\sqrt{k}}{3}$ for some k.

Each ask at M is 360 = 120°

In AME,
$$(ME)^{2} = (AE)^{2} - (AM)^{2}$$

 $= L^{2} - (\frac{1}{12})^{2}$
 $= L^{2} - \frac{1}{12}$

= ME = 125 , so ME = 151 L. Fridy, rateralise.